Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shan Gao,^a Li-Hua Huo,^a Chang-Sheng Gu,^a Hui Zhao^a and Seik Weng Ng^b*

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.106 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 ${\rm (\!\widehat{\!\!\!\!C\!\!\!}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis[(acetato- κ O)bis(2,2'-bipyridine- $\kappa^2 N, N'$)copper(II)] 4-carboxyphenoxyacetate hexahydrate

The Cu atoms in the two independent cations of the title compound, $[Cu(C_2H_3O_2)(C_{10}H_8N_2)_2]_2(C_9H_6O_5)\cdot 6H_2O$, show square-pyramidal coordination, with one N atom of a chelating heterocycle occupying the apical site. The anions interact, *via* hydrogen bonds, with the solvent water molecules to form sheets, and the cations occupy the spaces between the sheets.

Received 8 September 2004 Accepted 20 September 2004 Online 25 September 2004

Comment

We have reported previousy a small number of metal complexes of 4-carboxyphenoxyacetic acid, $HO_2CC_6H_4O$ - CH_2CO_2H , *e.g.* the tetraaquamagnesium complex (Gao, Li *et al.*, 2004) and a zinc 4,4'-bipyridine complex (Gao, Huo *et al.*, 2004). These studies have been extended to the present copper 2,2'-bipridine complex, (I).

In the reaction of copper diacetate with 2,2'-bipyridine, only one acetate group is replaced, the product being the hexahydrate title salt, illustrated in Fig. 1. Selected bond distances and angles are given in Table 1. The two independent cations each have their metal atoms in a square-pyramidal geometry; there is no coordination by the 4-carboxyphenoxyacetate dianion. The dianion interacts with the solvent water molecules, *via* hydrogen bonds, to form sheets (details are given in Table 2). The two cations show non-crystallographic symmetry with respect to one another; that involving atom Cu1 is approximately related to that involving atom Cu2 by the symmetry operation $(\frac{1}{2} - x, \frac{1}{2} - y, 1 - z)$.

The structural literature lists two such cations; one is a hydrate with the bis(oxalato)bis(2,2'-bipyridyl)copperchromate anion (Costisor *et al.*, 2001) and the other is a chloride that has methanol and four water solvent molecules (Carballo *et al.*, 2003). These Cu atoms also show squarepyramidal geometry.

Figure 1

ORTEPII (Johnson, 1976) plot of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Experimental

Copper diacetate monohydrate (4.00 g, 20 mmol) and 2,2'-bipyridine (2.12 g, 20 mmol) were added to an aqueous solution of 3-carboxyphenoxyacetic acid (1.96 g, 10 mmol). The solution was heated and the pH adjusted to 7, with several drops of 0.1 M sodium hydroxide, to give a clear solution. Blue prism-shaped crystal deposited from the solution after several days. Analysis calculated for C₅₃H₅₆Cu₂N₈O₁₅: C 54.31, H 4.82, N 9.56%; found: C 54.19, H 4.74, N 9.61%.

Crystal data

$[Cu(C_2H_3O_2)(C_{10}H_8N_2)_2]_2$ -	Z = 2
$(C_9H_6O_5)\cdot 6H_2O$	$D_x = 1.462 \text{ Mg m}^{-3}$
$M_r = 1172.14$	Mo $K\alpha$ radiation
Triclinic, $P\overline{1}$	Cell parameters from 24035
a = 14.385(2) Å	reflections
b = 14.605 (2) Å	$\theta = 3.3 - 27.4^{\circ}$
c = 14.655 (2) Å	$\mu = 0.88 \text{ mm}^{-1}$
$\alpha = 86.95 \ (3)^{\circ}$	T = 295 (2) K
$\beta = 67.22 \ (3)^{\circ}$	Prism, blue
$\gamma = 70.38 \ (3)^{\circ}$	$0.39 \times 0.26 \times 0.19 \text{ mm}$
$V = 2663.5 (7) \text{ Å}^3$	
Data collection	
Rigaku R-AXIS RAPID	11950 independent reflections
diffractometer	7589 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.4^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -18 \rightarrow 18$
T 0.400 T 0.051	1 10 10

 $T_{\rm min} = 0.490, \ T_{\rm max} = 0.851$ 25444 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.106$ S = 0.9811950 reflections 741 parameters

11900 macpenaent reneetton
7589 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.036$
$\theta_{\rm max} = 27.4^{\circ}$
$h = -18 \rightarrow 18$
$k = -18 \rightarrow 18$
$l = -16 \rightarrow 18$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1	
---------	--

Selected geometric parameters (Å, °).

Cu1-O1	1.976 (2)	Cu2-O3	1.964 (2)
Cu1-N1	2.006 (2)	Cu2-N5	2.016 (2)
Cu1-N2	2.193 (2)	Cu2-N6	2.206 (2)
Cu1-N4	2.048 (2)	Cu2-N7	2.012 (2)
Cu1-N3	1.998 (2)	Cu2-N8	2.020 (2)
O1 Cu1 N1	02.06 (0)	02 Cu2 N5	01 59 (0)
O1 - Cu1 - N1	92.90 (9)	$O_2 = Cu_2 = N_3$	91.36 (9)
OI - CuI - N2	90.28 (8)	03=Cu2=N0	95.97 (8)
OI-CuI-N3	91.67 (9)	O3-Cu2-N/	92.38 (9)
O1-Cu1-N4	155.77 (8)	O3-Cu2-N8	164.46 (8)
N1-Cu1-N2	78.46 (8)	N5-Cu2-N6	77.76 (9)
N1-Cu1-N3	174.85 (8)	N5-Cu2-N7	171.03 (9)
N1-Cu1-N4	94.85 (9)	N5-Cu2-N8	93.70 (9)
N2-Cu1-N3	103.30 (8)	N6-Cu2-N7	109.96 (8)
N2-Cu1-N4	107.74 (8)	N6-Cu2-N8	101.42 (9)
N3-Cu1-N4	80.00 (9)	N7-Cu2-N8	80.48 (9)

Table 2	
Hydrogen-bonding geometry ((Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1 <i>w</i> −H1 <i>w</i> 2···O5	0.86(1)	1.90(1)	2.748 (3)	168 (4)
$O1w - H1w1 \cdots O3w$	0.84(1)	2.08(1)	2.898 (4)	162 (3)
$O2w - H2w1 \cdots O5$	0.85(1)	1.91 (1)	2.762 (3)	174 (4)
$O2w - H2w2 \cdot \cdot \cdot O6^{i}$	0.85 (1)	2.07 (2)	2.855 (3)	154 (4)
$O3w - H3w1 \cdots O9^{ii}$	0.84(1)	2.00(1)	2.843 (3)	178 (4)
$O3w - H3w2 \cdot \cdot \cdot O3w^{iii}$	0.86(1)	2.21 (3)	2.959 (7)	146 (5)
$O4w - H4w1 \cdots O6$	0.84(1)	2.30(2)	3.081 (3)	155 (3)
$O4w - H4w2 \cdot \cdot \cdot O6w^{iv}$	0.85(1)	2.02(1)	2.858 (4)	168 (4)
$O5w - H5w1 \cdots O8$	0.86(1)	1.92 (2)	2.757 (4)	165 (4)
$O5w - H5w2 \cdots O1w^{v}$	0.85(1)	1.95(1)	2.799 (3)	175 (4)
O6w−H6w1···O9	0.85 (1)	1.91 (1)	2.754 (4)	171 (4)
$O6w - H6w2 \cdots O2w^{vi}$	0.85 (1)	1.97 (1)	2.794 (4)	163 (3)

Symmetry codes: (i) -x, 2-y, 2-z; (ii) x, y, 1+z; (iii) 1-x, 1-y, 2-z; (iv) -x, 2 - y, 1 - z; (v) 1 - x, 1 - y, 1 - z; (vi) x, y, z - 1.

The water H atoms were located and refined with distance restraints of O-H = 0.85 (1) Å and H···H = 1.39 (1) Å; $U_{iso}(H) =$ $1.5U_{eq}(O)$. Other H atoms were placed in calculated positions and treated as riding atoms [aromatic C-H = 0.93 Å and aliphatic C-H= 0.96 Å; $U_{iso}(H) = 1.2U_{eq}(C)$].

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20101003), the Heilongjiang Province Natural Science Foundation (No. B0007), the Educational Committee Foundation of Heilongjiang Province and the University of Malaya for generously supporting this study.

References

Carballo, R., Covelo, B., Vazquez-Lopez, E. M. & Garcia-Martinez, E. (2003). Z. Anorg. Allg. Chem. 629, 244-248.

Costisor, O., Mereiter, K., Julve, M., Lloret, F., Journaux, Y., Linert, W. & Andruh, M. (2001). Inorg. Chim. Acta, 324, 352-358.

Gao, S., Huo, L.-H., Gu, C.-S. Zhao, J.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1331-m1333.

- Gao, S., Li, J.-R., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2004). Acta Cryst. E60, m100-m101.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku (1998). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC. (2002). *CrystalStructure*. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.